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1. Introduction

Non-critical strings propagating in low-dimensional space-time are interesting toy models

of strings [1]–[12]. There are very few dynamical degrees of freedom in such models, and

the dynamics is heavily constrained by a large symmetry or integrability. Also, it has long

been known that these models have dual non-perturbative descriptions in terms of large N

matrix models.

Recent developments in string theories have lead us to realize that D-branes are present

also in non-critical string theories. Since a big breakthrough was made in the study of Li-

ouville theory on worldsheets with boundary [13]–[17], many earlier results from matrix

models have been revisited and combined with the modern ideas [18]–[34]. This has brought

us with a much deeper insight into the models. Now that we have a rather precise under-

standing of D-branes, it is natural to go further to study the dynamics of open strings. In

particular it will be interesting to study how much of the open string dynamics is governed

by symmetry.

In this note we wish to study some simple open string amplitudes in (p, q) minimal

string theory. We will study them from two different frameworks; using the two-matrix

model in section 2 and the worldsheet (p, q) minimal model coupled to Liouville theory in

section 3. Along the way, we find a curious linear relation among FZZT boundary states

in the worldsheet theory of (p, q) minimal string. In section 3.4 we compute the action of

boundary ground ring on physical open string operators and discuss its possible application

to higher point amplitudes.
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2. Matrix model

It is known that the minimal string theories can be formulated as large N matrix integrals.

Throughout this paper we will use the two-matrix model. We begin with reviewing the

definition and some fundamental results of this model. See [35, 36] for more detail.

Two-matrix model [8]–[11] is an integral over two N ×N Hermitian matrices X,Y :

∫

dXdY exp

[

−N
g

Tr (V (X) + U(Y ) −XY )

]

. (2.1)

We assume that V (X) and U(Y ) are polynomials of degree q and p, the simplest choice for

realizing (p, q) critical behavior. Standard Feynman graph expansion allows us to express

the partition function as a sum over fishnet diagrams of arbitrary area (number of vertices)

and topology. Each diagram is regarded as a two-dimensional Riemann surface painted by

two colors ‘X’ and ‘Y’. The contribution from genus h diagram is proportional to N2−2h,

so 1/N plays the role of bare string coupling.

After using Harish-Chandra-Itzykson-Zuber formula to reduce the integral to that over

the eigenvalues, one is lead to consider the set of polynomials {ψn(x), ψ̃n(y)} satisfying

∫

dxdye
−N

g
[V (x)+U(y)−xy]

ψn(x)ψ̃m(y) = δnm. (2.2)

The indices n,m represent the degree of the polynomials. The two matrices then turn into

operators X̂ and Ŷ acting on the set of polynomials as multiplications by x or y. The exact

partition function of two-matrix model can be expressed in terms of the matrix elements

of X̂ and Ŷ .

Spectral curve. A fundamental observable is the resolvent,

RX(x) ≡ Tr
1

X − x
, RY (y) ≡ Tr

1

Y − y
. (2.3)

They carry the important information on the eigenvalue distributions. Classically at g = 0

each pair of eigenvalues (xi, yi) sits on one of the classical saddle points satisfying y =

V ′(x), x = U ′(y). At nonzero g the eigenvalues spread due to repulsive Coulomb force

arising from integrating out the off-diagonal matrix elements.

In the planar approximation, the two equations

y = V ′(x) +
g

N
RX(x), x = U ′(y) +

g

N
RY (y) (2.4)

are known to give the same equation on (x, y) defining the spectral curve. When regarded

as a complex curve, its branch structure reflects how the eigenvalues of X,Y are distributed

near each saddle point. It is natural to find the true minimum of the classical action and

perform perturbative expansion around that ground state. Such classical ground state

should correspond to the spectral curve which is a complex curve of genus zero.
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Continuum limit. The idea to get continuous worldsheet is to send N → ∞ and g → gc

in a suitably correlated manner. Going back to the system of orthonormal polynomials,

we find the index n can be replaced by a continuous variable z = gn/N at large N . We

parametrize the region z ∼ gc by a new variable t ≡ ε−2(gc − z), put N = εγ−2 and take

ε → 0. For judiciously choson potentials, we find the operators X̂ and Ŷ , after suitable

rescaling, become a pair of differenial operators

X̂ ∼ dp + u(t)dp−2 + · · · ,
Ŷ ∼ dq + v(t)dq−2 + · · · ,

(

d ≡ d

dt
, γ = − 2

p+ q − 1

)

satisfying the canonical commutation relation [X̂, Ŷ ] = 1 or string equation. It is known

that these operators are conveniently expressed in terms of powers Lj of a pseudo-

differential operator L = d+O(d−1), whose positive parts Lj
+ generate mutually commuting

flows by ∂
∂tj
L = [Lj

+, L]. For Y = Lq, the solution to the string equation is

X = −
p

∑

j=1

(1 +
j

q
)tj+qL

j
+ = −

p+q
∑

j=1

j

q
tjL

j−q + O(d−1−q). (2.5)

The string equation allows us to determine all the coefficient functions (u, v, · · ·) and there-

fore the partition function as functions of couplings (t1, t2, · · ·). For p > q, the conformal

(p, q) minimal string is obtained by turning on only tp+q and tp−q. After fixing the former,

the latter plays the role of the cosmological constant.

The resolvents of two-matrix models for (p, q) minimal string were computed in [5].

The spectral curve is given by y = R
X̂

(x) and x = R
Ŷ
(y) and has a simple parametric

expression [11]

x = 2u
p

2 cos(πθ/q), y = 2u
q

2 cos(πθ/p), puq = (p − q)tp−q. (2.6)

Here θ ∼ θ + 2pq is the uniformizing parameter. Hereafter we set u = 1 for convenience.

Using Chebyshev polynomials Tn(cos θ) = cosnθ, the spectral curve can be written in an

algebraic form

E(x, y) ≡ Tq(x/2) − Tp(y/2) = 0. (2.7)

2.1 Some disk amplitudes

The resolvent R
X̂

(x) is related via Laplace transform to the operator TrelX̂ that creates

a macroscopic loop of length l [6, 7]. We define the FZZT boundary condtion in minimal

string theory by weighting each macroscopic loop of length l by a factor e−lx, where x is

called the boundary cosmological constant. To the leading order in large N , the correlator

−
〈

Tr log(X̂ − x)
〉

=

∫

dl

l

〈

Trel(X̂−x)
〉

(2.8)

gives the disk partition function. The resolvent is its first x-derivative so that it has one

insertion of boundary cosmological operator B along the loop. Using the uniformization

coordinate θ,
〈

θ[B]θ
〉

=

〈

Tr
1

X̂ − x(θ)

〉

= y(θ). (2.9)
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When there are more than one insertions of B, one may assign different boundary

cosmological constants to each boundary segment. Such amplitudes are the simplest am-

plitudes of open strings stretching between different FZZT-branes. We can compute them

by the iterative use of the simple formula

1

(X̂ − x1)(X̂ − x2)
=

1

x1 − x2

(

1

X̂ − x1

− 1

X̂ − x2

)

.

Explicitly, one finds

〈

θ1 [B]θ2 [B]θ1

〉

=

〈

Tr
1

(X̂ − x1)(X̂ − x2)

〉

=
y1 − y2

x1 − x2
, (2.10)

〈

θ1[B]θ2 [B]θ3 [B]θ1

〉

=

〈

Tr
1

(X̂ − x1)(X̂ − x2)(X̂ − x3)

〉

=
x1y2 + x2y3 + x3y1 − y1x2 − y2x3 − y3x1

(x1 − x2)(x2 − x3)(x3 − x1)
, (2.11)

where xi = x(θi), yi = y(θi). General n-point amplitude becomes

〈

θ1 [B]θ2 · · · θn [B]θ1

〉

=
(−)

1
2
n(n−1)

∆(xi)
det







1 x1 · · · xn−2
1 y1

...
...

...
...

1 xn · · · xn−2
n yn






. (2.12)

A more non-trivial boundary operator is the one which changes the color of the bound-

ary, which we call T in the following. The amplitudes of such operators are given by

“mixed-trace” correlators, and they have been extensively studied in a recent work by Ey-

nard, et. al. using the loop equations [37]–[41]. The simplest example is the two-point

correlator, which in the planar limit is given by [37]
〈

Tr
1

X̂ − x

1

Ŷ − y

〉

=
E(x, y)

(x−R
X̂

(y))(y −R
Ŷ

(x))
. (2.13)

As a function of θ, θ′ it becomes, up to normalization,

〈

θ[T ]θ
′

[T ]θ
〉

=
2cos πθ − 2 cos πθ′

{x(θ) − x(θ′)}{y(θ) − y(θ′)} . (2.14)

Note that the enumerator can be factorized,

2 cos πθ − 2 cos πθ′ =

q−1
∏

j=0

{x(θ) − x(θ′ + 2pj)} =

p−1
∏

j=0

{y(θ) − y(θ′ + 2qj)}. (2.15)

Disk amplitudes containing more T ’s can be computed using the recursion relation of [38].

3. Worldsheet theory

The worldsheet theory of (p, q) minimal string is the product of a Liouville theory with

b =
√

p/q and a (p, q) minimal model. In this section we generalize this and study the

product of two Liouville theories with the couplings b and ib [42, 43]. We start with

reviewing the Liouville theory in the presence of boundary.

– 4 –
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3.1 Liouville theory with boundary

Liouville theory with coupling b is a theory of a scalar field φ with a potential µe2bφ. It is

a CFT with central charge

c = 1 + 6Q2 (Q = b+ b−1). (3.1)

Boundary conditions of Liouville theory are classified by [13, 15]. Some of them, called

FZZT boundary states, are described by the boundary interaction µBB, where the cos-

mological operator B ≡
∮

ebφ measures the length of the boundary. We parametrize the

boundary states by s, in terms of which µB is given by

µB = x(s) ≡
√

µπγ(b2) × Γ(1 − b2)

π
cos(πbs).

In the following we set µπγ(b2) = 1 by a suitable constant shift of the Liouville field. The

dual boundary cosmological constant y(s) is related to x(s) by b↔ 1/b flip.

Boundary operator Bk = e
(Q+k)φ

2 has weight Q2−k2

4 and satisfies reflection relation

s[Bk]
t = s[B−k]

t × d(k, s, t). (3.2)

The coefficient d(k, s, t) is given by

d(k, s, t) = G(−k)G(k)−1bkb− k
b S

(

Q− k + s+ t

2

)

× (3.3)

×S

(

Q− k + s− t

2

)

S

(

Q− k − s+ t

2

)

S

(

Q− k − s− t

2

)

.

Here the functions G(x) and S(x) = G(Q− x)/G(x) are the special functions introduced

in [13]. They are characterized by the shift equations

S(x+ b) = 2 sin(πbx)S(x),

S

(

x+ 1
b

)

= 2 sin(πx/b)S(x),

G(x+ b) = (2π)−
1
2 b

1
2
−bxΓ(bx)G(x),

G

(

x+ 1
b

)

= (2π)−
1
2 b

x
b
− 1

2 Γ(x/b)G(x).
(3.4)

As a special case, we have

d

(

b− 1

b
, s, t

)

=
y(s) − y(t)

x(s) − x(t)
. (3.5)

Degenerate operators. The boundary operators Bk with special k correspond to de-

generate representations. They are used to construct the boundary ground ring elements

in minimal string theory. The basic ones are X ≡ e−
bφ

2 and Y ≡ e−
φ

2b . X or Y are known

to connect two boundary states whose s labels differ by ±b or ±b−1, respectively. Their

OPEs with general boundary operators read [13],

s′ [X(z)]s[Bk(w)]t =
∑

±

X∓ |z − w| b
2
(Q±k) · s′ [Bk∓b(w)]t,

s′ [Y (z)]s[Bk(w)]t =
∑

±

Y∓ |z − w| 1
2b

(Q±k) · s′ [Bk∓ 1
b
(w)]t. (3.6)
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The coefficients are given by X− = Y− = 1 and

X+ =
2b2

π
Γ(−bk − b2)Γ(bk) sin π

(

b(Q+ k ± s+ t)

2

)

sinπ

(

b(Q+ k ± s− t)

2

)

(s′ = s± b),

Y+ =
2

πb2
Γ

(

− k

b
− 1

b2

)

Γ

(

k

b

)

sinπ

(

Q+ k ± s+ t

2b

)

sinπ

(

Q+ k ± s− t

2b

)

(3.7)

(

s′ = s± 1

b

)

.

The second Liouville theory. As the matter theory, we consider the second Liouville

theory with coupling ib and the central charge

c = 1 + 6Q̃2 (Q̃ = ib− ib−1).

The product of Liouville theories with couplings b and ib has critical central charge. We

put a tilde to every quantity in the second Liouville theory: for example, the boundary

operators B̃ik have weight Q̃2+k2

4 . The basic degenerate operators are denoted by X̃ and

Ỹ , and when multiplied on B̃ik they shift the momentum k by ±b or ±b−1.

For b =
√

p/q the second Liouville theory can be reduced to the (p, q) minimal model

with finitely many primary fields forming a closed algebra under fusion. Also, in minimal

models there are finitely many boundary states (Cardy states) corresponding to special

values of the parameter s̃,

s̃ ∈ K ≡ {lb− kb−1 | 1 ≤ k ≤ p− 1 , 1 ≤ l ≤ q − 1}. (3.8)

Although their property is significantly different from that of FZZT boundary states in

Liouville theory with generic b, the OPE formula (3.6), (3.7) should apply to them as

well. This is because the OPE coefficients appearing there are essentially the fusion matrix

elements, and they depend on the boundary conditions only through their s-parameters.

3.2 FZZT-branes

The FZZT-brane |s; k, l〉 in minimal string theory is defined as the direct product of a

FZZT boundary state in Liouville theory and the (k, l) Cardy state in minimal model. Its

Liouville part is characterized by the boundary cosmological constant and its dual,

x(s) = 2 cos(πsb), y(s) = 2 cos(πs/b), (3.9)

where some unimportant factors has been dropped. Comparison of this with the result

from matrix model shows that the spectral curve has an interpretation as the moduli space

of FZZT-branes [24]. The uniformization parameters in the two frameworks are related by

θ = s
√
pq.

Apparently, the worldsheet theory has more D-branes than the two-matrix model, since

the branes in the latter do not have labels (k, l). A proposal to resolve this mismatch has

been proposed in [24]: it has been observed there that the FZZT-brane |θ; k, l〉 in minimal

– 6 –
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cos−1(x/2)

cos−1(y/2)

Figure 1: The oblique lines form the spectral curve for the two-matrix model realizing (p, q) = (8, 7)

minimal string. The curve covers the x-plane 7 times and y-plane 8 times. The white dot is an

FZZT-brane |θ; 3, 3〉 which decomposes into nine elementary FZZT-branes described by black dots.

string theory with (k, l) 6= (1, 1) is equivalent to the sum of (k × l) elementary branes

|θ′〉 ≡ |θ′; 1, 1〉,

|θ; k, l〉 ≃
∑

i,j

|θ + qj + pi〉,
{

j ∈ {1 − k, 3 − k, · · · , k − 1},
i ∈ {1 − l, 3 − l, · · · , l − 1}. (3.10)

This equivalence has been checked in [24] in the sense of BRST cohomology, and derived

in [32] using the boundary ground ring. The spectral curve and an example of FZZT-brane

is described in figure 1 which nicely encodes the representation theoretic aspect of the (p, q)

minimal model.

3.3 Some disk amplitudes

Here we consider some simple disk amplitudes in the generalized minimal string theory

with coupling b, whose worldsheet theory is made of two Liouville theories with couplings

b and ib. The basic physical boundary operators are boundary tachyons,

Bk ≡ cBkB̃ik. (3.11)

Here c is the reparametrization ghost field. The boundary of the disk is labeled by a pair

of parameters (s, s̃). To get (p, q) minimal string theory, we set b =
√

p/q and restrict k

and s̃ to take values in K of (3.8).

Amplitudes of B. General three-point amplitudes are given by the product of disk

three-point functions for the two Liouville theories [17]. Here we focus on the special case

where the formula simplifies,

〈

t[Bk]
s[Bb− 1

b
]s

′

[Bk]
t
〉

= k
d(k, s, t) − d(k, s′, t)

x(s) − x(s′)
. (3.12)

– 7 –
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From this we get the three-point amplitude

〈

(t,t̃)[Bk]
(s,s̃)[Bb− 1

b
](s

′,s̃)[Bk]
(t,t̃)

〉

= k
d(k, s, t) − d(k, s′, t)

x(s) − x(s′)
· d̃(ik, s̃, t̃). (3.13)

Notice that Bb− 1
b

= B(1,1) is nothing but the boundary cosmological operator B. Restricting

to (p, q) minimal string theory and setting k = s̃ = t̃ = b − 1
b
, the three-point amplitude

becomes

〈

(s1)[B](s2)[B](s3)[B](s1)
〉

=
p− q√
pq

x1y2 + x2y3 + x3y1 − y1x2 − y2x3 − y3x1

(x1 − x2)(x2 − x3)(x3 − x1)
, (3.14)

where we used xi = x(si), yi = y(si). This is in agreement with the matrix model

result (2.11).

In the limit s′ → s the right hand side of (3.13) becomes a derivative with respect to x.

We assume that one can integrate it when the operators inserted are all within Seiberg’s

bound [44], since it would lead to an inconsistency if we could always integrate it [45]. We

thus find the two-point amplitude

〈

(t,t̃)[Bk]
(s,s̃)[Bk]

(t,t̃)
〉

= sgn(Rek)kd(k, s, t)d̃(ik, s̃, t̃). (3.15)

Restricting to (p, q) minimal string and k = (1, 1), we again find the agreement with matrix

model result (2.10),
〈

(s1)[B](s2)[B](s1)
〉

=
p− q√
pq

y1 − y2

x1 − x2
. (3.16)

We can integrate further and check that the one-point amplitude agrees with the resolvent

in two-matrix model.

Amplitudes of T . Next we consider the general two-point amplitude in (p, q) minimal

string.

〈

(s′;k′,l′)[B(n,m)]
(s;k,l)[B(n,m)]

(s′;k′,l′)
〉

∼ |mp− nq|√
pq

d(mb− nb−1, s, s′). (3.17)

The amplitude is non-vanishing only when the representation (n,m) is allowed between

two Cardy states (k, l) and (k′, l′) in minimal model. More explicitly

|k − k′| + 1 ≤ n ≤ min(k + k′ − 1, 2p − k − k′ − 1),

|l − l′| + 1 ≤ m ≤ min(l + l′ − 1, 2q − l − l′ − 1).
(3.18)

Using θ = s
√
pq and θ′ = s′

√
pq, the amplitude is proportional to

∼
∏n−1

j=0 {y(θ′) − y(θ + p(1 −m) + q(1 − n+ 2j))}
∏m−1

j=0 {x(θ′) − x(θ + q(1 − n) + p(1 −m+ 2j))}
.

Comparing this with (2.14) one finds the correspondence

θ[T ]θ
′ ∼ (θ;k,l)[B(p−1,1)]

(θ′−pq;p−k,l). (3.19)

– 8 –
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Thus we identified the two boundary operators B and T in two-matrix model with the

boundary operators B(1,1) and B(p−1,1) in the worldsheet theory. These operators are both

at the corner of Kac table. One of their special properties is that, when fused with any

primary field, they produce only one primary.

Interestingly, by translating some four-point amplitudes from two-matrix model into

worldsheet theory, one finds that the amplitudes become non-invariant under Liouville

reflection of operators (3.2). The standard interpretation for this is that the insertion of

four or more operators is enough to deform the theory away from the Liouville background.

New linear relation among D-branes. Note that (3.19) also suggests the equivalence

between FZZT-branes

|θ; k, l〉 = − |θ − pq; p− k, l〉. (3.20)

The minus sign is required for the equalities with different (k, l) to be mutually consistent.

More interestingly, when these equalities are combined with (3.10), they give rise to simple

linear relations among elementary FZZT-branes,

0 =

p
∑

j=1

|θ + 2qj〉 =

q
∑

j=1

|θ + 2pj〉 , (3.21)

which say that p or q elementary FZZT-branes can disappear into nothing when placed in

a suitable manner. These equalities can be checked in the sense of BRST cohomology in

the same way as (3.10) was checked.

3.4 Boundary ground ring

The worldsheet theory has boundary operators labeled by (k, l), but the two-matrix model

does not seem to have corresponding boundary changing operators. In other matrix models

such as height models [3 – 5], there seem to be more boundary operators and we may make

a more direct comparison with the worldsheet theory [46]. On the other hand, different

boundary operators in worldsheet theory are related by the action of boundary ground

ring [47, 23, 32] so that we may well regard them as redundant.

There is a set of physical operators of ghost number zero in minimal string theory

which form the ground ring. Here we consider the ring of boundary operators. The ring

elements Om,n are constructed from the (m,n) degenerate Liouville operator and the (m,n)

operator in minimal model. The ring is generated by the operators X = O1,2 and Y = O2,1,

X ≡ 1

2b2
(b+2 bc + L−1 − L̃−1)XX̃,

Y ≡ b2

2
(b−2 bc + L−1 − L̃−1)Y Ỹ . (3.22)

Here b, c are reparametrization ghosts. The ring relation is realized linearly on the physical

boundary operators Bk. Schematically one has

XBk =
∑

±

X±(k)Bk±b,

YBk =
∑

±

Y±(k)Bk± 1
b
. (3.23)

– 9 –
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The coefficients X±,Y± can be computed using the formulae (3.6). Similar formulae hold

also for right multiplications. Note that the coefficients depend on the boundary parameters

though we will suppress it for notational simplicity. Note also that the boundary parameters

s and s̃ have to jump by ±b or ±b−1 where X or Y are inserted.

The linear action of X ,Y on boundary tachyons satisfies the following. First, the left-

and right-multiplications commute for all pairs of operators,

(XB)Y = X (BY), (XB)X = X (BX ), etc. (3.24)

Also, the multiplications of an X and a Y from the same side anticommute,

XYB = − YXB. (3.25)

To simplify the formulae that follow, we introduce the notation

X± = (s±b,s̃−b)X (s,s̃),

X̄± = (s±b,s̃+b)X (s,s̃),

Y± = (s∓ 1
b
,s̃+ 1

b
)Y(s,s̃),

Ȳ± = (s∓ 1
b
,s̃− 1

b
)Y(s,s̃).

(3.26)

They can be shown to satisfy the algebraic relations

X̄−X+ − X̄+X− = sin(πbs) sin(πbs̃ − πb2),

X+X̄− − X̄+X− = sin(πbs − πb2) sin(πbs̃),

Ȳ−Y+ − Ȳ+Y− = sin(πs
b

) sin(πs̃
b

+ π
b2

),

Y+Ȳ− − Ȳ+Y− = sin(πs
b

+ π
b2

) sin(πs̃
b

),

(3.27)

and commutation relations

[X+, X̄−] = − sinπb2 sinπb(s̃− s),

[X−, X̄+] = − sinπb2 sinπb(s̃+ s),

[Y+, Ȳ−] = sin π
b2

sin π
b
(s̃− s),

[Y−, Ȳ+] = sin π
b2

sin π
b
(s̃+ s).

(3.28)

All other commutators vanish, i.e.

[X±, X̄±] = [X+,X−] = [X̄+, X̄−] = [Y±, Ȳ±] = [Y+,Y−] = [Ȳ+, Ȳ−] = 0.

Linear relations among D-branes revisited. Thanks to the above simple algebraic

relations, we may construct general ring elements as simple products of generators without

worrying about the order of multiplication. Let us now consider the (p, q) minimal string

theory and restrict k and s̃ to take values in K. Let us introduce

(θ′)[Ok,l]
(θ;k,l) = (θ′)[Yk−

− Yk+
+ X l−

− X l+
+ ](θ;k,l),

(θ;k,l)[Ōk,l]
(θ′) = (θ;k,l)[X̄ l+

+ X̄ l−
− Ȳk+

+ Ȳk−

− ](θ
′), (3.29)

where k, l, k±, l±, θ and θ′ satisfy

θ′ = θ + p(l+ − l−) − q(k+ − k−), k = k+ + k− + 1, l = l+ + l− + 1. (3.30)

These operators can be used to generalize the relations (3.10) to the branes appearing

on boundary segment. The naive application of the formula to an FZZT-brane between

– 10 –
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two boundary operators would lead to a conflict with Cardy’s constraint. The correct way

is to put a suitable pair of boundary ground ring elements at the ends of the segment. By

repeatedly using the first and third equalities in (3.27), we find

](θ;k,l)[ =
∑

θ′

](θ;k,l)[Ōk,l]
(θ′)[Ok,l]

(θ;k,l)[

Fθ′(θ; k, l)
, (3.31)

where the function Fθ′(θ; k, l) is given by

Fθ′(θ; k, l) = (−1)l++k−

l+
∏

j=−l−

sin
(θ + jp)π

q

k+
∏

j=−k−

sin
(θ − jq)π

p

×
k+
∏

j=1

sin
jqπ

p

k−
∏

j=1

sin
jqπ

p

l+
∏

j=1

sin
jpπ

q

l−
∏

j=1

sin
jpπ

q
. (3.32)

The formula (3.31) can also be used to relate the three-point amplitudes of general bound-

ary operators to that of three boundary cosmological operators, since

(θ)[Ok,lB(m,n)Ōk′,l′ ]
(θ′)

should always be proportional to B(1,1) from Cardy’s constraint.

Recursion relations for open string amplitudes. Using the operators X ,Y one can

derive recursion relations among three-point amplitudes. Omitting the dependence on

boundary parameters, one has schematically

0 = 〈Bk1 [QB ,X ]Bk2Bk3〉
= 〈(Bk1X )Bk2Bk3〉 − 〈Bk1(XBk2)Bk3〉
=

∑

±

X±(k1)〈Bk1±bBk2Bk3〉 +
∑

±

X±(k2)〈Bk1Bk2±bBk3〉. (3.33)

Similar recursion relation can be shown to hold also for two-point amplitudes. The idea

to get these recursion relations is to rewrite the amplitudes containing QB-exact operator

into an integral over the boundary of moduli space or a sum over factorized worldsheets.

The same arguments can be applied to obtain recursion relations for higher amplitudes.

Concrete recursion relations have been proposed in c = 1 string theory by [23] and in

minimal string theory by [32], following the argument of [47] that the recursion relations

boil down to the higher operator product algebras such as

(Bk1 · · · Bkn
XBkn+1 · · · BkN

) −→ Bk′ .

However, we do not see any obvious reason that the operator products vanish for N ≥ 3 in

the worldsheet theory with nonzero cosmological coupling, though it was assumed in many

literature.

In a recent paper [45] the recursion relation for four-point amplitudes in c = 1 theory

has been solved and shown to reproduce the matrix model result. It will be important to

understand better the symmetry structure of minimal string theory by making use of the

boundary ground ring relations in worldsheet theory and the loop equations in two-matrix

model.
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